Finite-element analysis of the center of resistance of the mandibular dentition
نویسندگان
چکیده
OBJECTIVE The aim of this study was to investigate the three-dimensional (3D) position of the center of resistance of 4 mandibular anterior teeth, 6 mandibular anterior teeth, and the complete mandibular dentition by using 3D finite-element analysis. METHODS Finite-element models included the complete mandibular dentition, periodontal ligament, and alveolar bone. The crowns of teeth in each group were fixed with buccal and lingual arch wires and lingual splint wires to minimize individual tooth movement and to evenly disperse the forces onto the teeth. Each group of teeth was subdivided into 0.5-mm intervals horizontally and vertically, and a force of 200 g was applied on each group. The center of resistance was defined as the point where the applied force induced parallel movement. RESULTS The center of resistance of the 4 mandibular anterior teeth group was 13.0 mm apical and 6.0 mm posterior, that of the 6 mandibular anterior teeth group was 13.5 mm apical and 8.5 mm posterior, and that of the complete mandibular dentition group was 13.5 mm apical and 25.0 mm posterior to the incisal edge of the mandibular central incisors. CONCLUSIONS Finite-element analysis was useful in determining the 3D position of the center of resistance of the 4 mandibular anterior teeth group, 6 mandibular anterior teeth group, and complete mandibular dentition group.
منابع مشابه
The Effect of Post Material on Stress Distribution in Mandibular Second Premolar Tooth by Finite Element Analysis
Introduction: The restoration material commonly used as core material for pulpless posterior teeth is mostly amalgam due to its high strength and low cost and it can be used with or without pin. The aim of this study was to evaluate the influence of post material on stress distribution in mandibular second premolar tooth by finite element analysis. Method: The stress distribution was analyzed i...
متن کاملEffect of pontic width on stress distribution in abutment teeth and their supporting structures by finite element analysis
Effect of pontic width on stress distribution in abutment teeth and their supporting structures by finite element analysis Dr. J. Ghanbarzadeh* - Dr. MR. Sabooni* - Dr. M. Keshavarz** * Assistant Professor of Dental Prostheses Dept., Faculty of Dentistry, Mashhad University of Medical Sciences. ** Assistant Professor of Dental Prostheses Dept., Faculty of Dentistry, Kerman University of Medical...
متن کاملImmediately loaded Xive and Nisastan implants the effect of macro-design on distribution of strain in surrounding bone: A finite element analysis
Immediately loaded Xive and Nisastan implants the effect of macro-design on distribution of strain in surrounding bone: A finite element analysis Dr. A. Fazel * - Dr. SH. A. Alai ** - Dr. M. Rismanchian *** *Associate Professor of Prosthodontics Dept., Faculty of Dentistry and Dental Research Center, Tehran University / Medical Sciences. **Assistant Professor of Prosthodontics Dept., Faculty of...
متن کاملEffect of Abutment Height Difference on Stress Distribution in Mandibular Overdentures: A Three-Dimensional Finite Element Analysis
Background and Aim: Implant-supported overdentures are a treatment option for edentulous patients. One of the important factors in determining the prognosis of overdenture treatment is to control the distribution of stress in the implant-bone and attachment complex. This study assessed the effect of implant abutment height difference on stress distribution in mandibular overdentures. Materials...
متن کاملSecond Molar Uprighting with Temporary Anchorage Devices: A Finite Element Study
BACKGROUND AND OBJECTIVE: Premature loss of mandibular first molar is a common problem in adults. Mesial tipping of second molar may occur in this situation. Various orthodontic mechanics have been proposed for molar uprighting. The aim of this study was to compare four methods of molar uprighting using Finite Element Analysis(FEM). METHODS: In first model of this finite element study, a 0.019...
متن کامل